[-(y^4-y^2+1)-(y^4+5y^2+1)]+(8y^4-6y^2-8)=

Simple and best practice solution for [-(y^4-y^2+1)-(y^4+5y^2+1)]+(8y^4-6y^2-8)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for [-(y^4-y^2+1)-(y^4+5y^2+1)]+(8y^4-6y^2-8)= equation:


Simplifying
[-1(y4 + -1y2 + 1) + -1(y4 + 5y2 + 1)] + (8y4 + -6y2 + -8) = 0

Reorder the terms:
[-1(1 + -1y2 + y4) + -1(y4 + 5y2 + 1)] + (8y4 + -6y2 + -8) = 0
[(1 * -1 + -1y2 * -1 + y4 * -1) + -1(y4 + 5y2 + 1)] + (8y4 + -6y2 + -8) = 0
[(-1 + 1y2 + -1y4) + -1(y4 + 5y2 + 1)] + (8y4 + -6y2 + -8) = 0

Reorder the terms:
[-1 + 1y2 + -1y4 + -1(1 + 5y2 + y4)] + (8y4 + -6y2 + -8) = 0
[-1 + 1y2 + -1y4 + (1 * -1 + 5y2 * -1 + y4 * -1)] + (8y4 + -6y2 + -8) = 0
[-1 + 1y2 + -1y4 + (-1 + -5y2 + -1y4)] + (8y4 + -6y2 + -8) = 0

Reorder the terms:
[-1 + -1 + 1y2 + -5y2 + -1y4 + -1y4] + (8y4 + -6y2 + -8) = 0

Combine like terms: -1 + -1 = -2
[-2 + 1y2 + -5y2 + -1y4 + -1y4] + (8y4 + -6y2 + -8) = 0

Combine like terms: 1y2 + -5y2 = -4y2
[-2 + -4y2 + -1y4 + -1y4] + (8y4 + -6y2 + -8) = 0

Combine like terms: -1y4 + -1y4 = -2y4
[-2 + -4y2 + -2y4] + (8y4 + -6y2 + -8) = 0

Remove brackets around [-2 + -4y2 + -2y4]
-2 + -4y2 + -2y4 + (8y4 + -6y2 + -8) = 0

Reorder the terms:
-2 + -4y2 + -2y4 + (-8 + -6y2 + 8y4) = 0

Remove parenthesis around (-8 + -6y2 + 8y4)
-2 + -4y2 + -2y4 + -8 + -6y2 + 8y4 = 0

Reorder the terms:
-2 + -8 + -4y2 + -6y2 + -2y4 + 8y4 = 0

Combine like terms: -2 + -8 = -10
-10 + -4y2 + -6y2 + -2y4 + 8y4 = 0

Combine like terms: -4y2 + -6y2 = -10y2
-10 + -10y2 + -2y4 + 8y4 = 0

Combine like terms: -2y4 + 8y4 = 6y4
-10 + -10y2 + 6y4 = 0

Solving
-10 + -10y2 + 6y4 = 0

Solving for variable 'y'.

Factor out the Greatest Common Factor (GCF), '2'.
2(-5 + -5y2 + 3y4) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-5 + -5y2 + 3y4)' equal to zero and attempt to solve: Simplifying -5 + -5y2 + 3y4 = 0 Solving -5 + -5y2 + 3y4 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1.666666667 + -1.666666667y2 + y4 = 0 Move the constant term to the right: Add '1.666666667' to each side of the equation. -1.666666667 + -1.666666667y2 + 1.666666667 + y4 = 0 + 1.666666667 Reorder the terms: -1.666666667 + 1.666666667 + -1.666666667y2 + y4 = 0 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + -1.666666667y2 + y4 = 0 + 1.666666667 -1.666666667y2 + y4 = 0 + 1.666666667 Combine like terms: 0 + 1.666666667 = 1.666666667 -1.666666667y2 + y4 = 1.666666667 The y term is -1.666666667y2. Take half its coefficient (-0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. -1.666666667y2 + 0.6944444447 + y4 = 1.666666667 + 0.6944444447 Reorder the terms: 0.6944444447 + -1.666666667y2 + y4 = 1.666666667 + 0.6944444447 Combine like terms: 1.666666667 + 0.6944444447 = 2.3611111117 0.6944444447 + -1.666666667y2 + y4 = 2.3611111117 Factor a perfect square on the left side: (y2 + -0.8333333335)(y2 + -0.8333333335) = 2.3611111117 Calculate the square root of the right side: 1.536590743 Break this problem into two subproblems by setting (y2 + -0.8333333335) equal to 1.536590743 and -1.536590743.

Subproblem 1

y2 + -0.8333333335 = 1.536590743 Simplifying y2 + -0.8333333335 = 1.536590743 Reorder the terms: -0.8333333335 + y2 = 1.536590743 Solving -0.8333333335 + y2 = 1.536590743 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + y2 = 1.536590743 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + y2 = 1.536590743 + 0.8333333335 y2 = 1.536590743 + 0.8333333335 Combine like terms: 1.536590743 + 0.8333333335 = 2.3699240765 y2 = 2.3699240765 Simplifying y2 = 2.3699240765 Take the square root of each side: y = {-1.539455773, 1.539455773}

Subproblem 2

y2 + -0.8333333335 = -1.536590743 Simplifying y2 + -0.8333333335 = -1.536590743 Reorder the terms: -0.8333333335 + y2 = -1.536590743 Solving -0.8333333335 + y2 = -1.536590743 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + y2 = -1.536590743 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + y2 = -1.536590743 + 0.8333333335 y2 = -1.536590743 + 0.8333333335 Combine like terms: -1.536590743 + 0.8333333335 = -0.7032574095 y2 = -0.7032574095 Simplifying y2 = -0.7032574095 Reorder the terms: 0.7032574095 + y2 = -0.7032574095 + 0.7032574095 Combine like terms: -0.7032574095 + 0.7032574095 = 0.0000000000 0.7032574095 + y2 = 0.0000000000 The solution to this equation could not be determined.This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| y^2+7y+3=0 | | 3x-3x+37=-3+5(x+6) | | p=9+1.5x | | (7x-9)(49x^2-126+81)=0 | | 5k+40=9k-27 | | 70x-14=-10(-7x-8)-3 | | 10y-10x=20 | | 70x-14=10(-7x-8)-3 | | (3x-5)+(7x-2)+(5x+7)=180 | | 14-7x=82-35x | | 4(9r-6)-9r=3(12r-2) | | 7n=72 | | 197-5x=40+22 | | 2+6=x-5 | | 4n-4=9n-63 | | 3q+4r-s+5q-6r+2s= | | [-(y^4-y^2+1)-(y^4+6y^2+1)]+(8y^4-7y^2-12)= | | -5-(5-4p)= | | 2x+x+1.25=8 | | y+10=12 | | 4b-12+4b=-9 | | 300=13x | | 25x^2-7x+1+17x=0 | | 33=2u+11 | | (3x-14)-(-4x+5)= | | 7=3.5m | | 33=2u+1 | | 25x^2-7x+1=-17x | | 39=3c | | 2p^2-8p-6=0 | | z/6+4=6-z/6 | | (x-5)(x+8)=5(x-5) |

Equations solver categories